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ABSTRACT

The concept of a Markov chain has been used to treat the random processes of
scatter and absorption which occur when neutrons are incident on a slab of finite
thickness, such as a shield or an inside wall of a shelter entranceway. It is assumed
that scattering is isotropic in the laboratory system and that the scattering and absorp-
tion cross sections do not change during a neutron-scattering history. The encouraging
results obtained to date indicate that for thin slabs the analytical random walk method
may have important advantages over Monte Carlo calculations (which require lengthy
computer runs to obtain acceptably small statistical variances), moments method
calculations (which are actually appropriate only for infinite medium cases), and
numerical solutions of the neutron transport equation (which are lengthy, tedious,
and necessarily approximate).
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INTRODUCTION

In calculating shielding effectiveness it is often desired to have values for
neutron albedo. In particular, the following items are of interest for a neutron
incident on a slab of isotropically scattering material:

1. Its total albedo; i.e., its probability of eventually backscattering out of
the slab.

2. An analysis of the total olbedo into differential albedo as a function of
the polar angle of return or backscatter direction.

3. An analysis of the total into the integer numbers of impacts experienced
before returning.

4. The probability density of the depth in the slab at which a backscattered
neutron makes its last impact.

The classical partial differential transport equation uses time as an independent
variable. It appeared that a possible approach to the foregoing set of problems
would be to write and solve a psuedo transport equation in which the time scale is
replaced by a scale linear in the number of historical neutron impacts. Difficulties
in writing such an equation were discussed with Dr. Klaus H. Daniel, Professor,
Department of Mathematics, University of Maryland, during his stay at the U. S.
Naval Civil Engineering Laboratory in the summer of 1965. Dr. Daniel suggested
the possibility of obtaining insight by first obtaining some approximate solutions
using increments of slab thickness (instead of differential thickness) and then studying
these approximate solutions in the hope of learning how to write the correct equation
to go to the limit in the distance variable normal to the slab face.

This suggestion was pursued. There is still no guarantee that the psuedo
equation will be written; nevertheless, the method for obtaining approximate solutions
by dividing slab thickness into increments seems to hold promise as a usable method
in its own right. The description of this method constitutes the purpose of this report.

STATEMENT OF THE PROBLEM

Consider the cuse of a neutron incident at some polar angle to the surface of a
plane slab of material. The slab has a finite thickness and consists of matter which can
absorb neutrons or scatter neutrons isotropically in the laboratory system. The probabil-
ities for absorption and scatter at each collision are constant; i.e., the energy of the
neutron does not change. The foregoing description is equivalent to the case of a
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broad, parallel beam of thermal neutrons incident on a plane slab of a moderator whi
has some absorption. It is required to find a probabilistic description of the behavior
of the neutrons in the slab.

Mathematically, the problem can be phrased in terms of those quantities which
are given and those quantities which are desired.

Given:

1. A plane slob, of thickness T, has known values for Zt, I., and I , which
are, respectively, the total cross section, the scattering cross section, and tAe absorp.
tion cross section. ;t = IS + 1a.

2. Scattering is isotropic in the laboratory system.
3. The slob's dimensions are such that it occupies the space (-W < X < co),

(-w <Y <co), (0 • Z s T). The face at Z = T will be named the forward face, and
the initial, near, or backward face is at Z = 0.

4. One neutron is directed from the region (Z < 0) toward the origin (on the
backward slab face at Z = 0) in a course which makes a given angle e0 with the
-Z axis, and an angle (nr/2 - e0 ) with the -Y axis.

Find:

1. Total albedo, d (probability of eventually scattering back to Z < 0).
2. Differential albedo, a•, as a function of e, so that

2f iri/2

S S ~(0)sin 6d@ do
0 0

3. Analysis of total albedo into the number of impacts experienced; i.e.,

00

j=l

4. Analysis of total albedo into depth, Z, (0 Z r T), probability density of
the depth at the point of last impact before returning.

5. Total absorption, &o (probability of even'ual absorption of the neutron by
the slab).

6. Analysis of (o into total number of impacts experienced; i.e.,

; j
"a j=2
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7. Analysis of (1' into depth probability density of point of absorption.
8. Probability, (Wi , that the neutron will go through the slab eventually.
9. Analysis of CW into the number of impacts experienced; i.e.,

CI1

j =0

where do is the probability of uncollided transmission.
10. Analysis of ( d't - dt) into depth density of last impact before leaving

forward face at Z = T.
11. Expec.ted number of neutron impacts, E(N).
12. Expected number of impacts, E(Nb), if neutron is backscattered from

the slab.
13. Expected number of impacts, E(No), if neutron is absorbed.
14. Expected number of impacts, E(Ns), if neutron is scattered through the slab.
15. Expected number of impacts, E(Nt), if eventually neutron goes through

the slab.

For the sake of clarity, a few obvious consequences of the mathematical model
are now stated.

Granted that an impact is definitely in the offing, the probability that the
neutron will be absorbed at that impact is 1ý/Zt. Granted that it does not become
absorbed at that impact, its scattering direction density is uniformly 1/47T in all
directions, so that

1 jd(I =1
sphere

or, equivalently,
2,ff ff

I sin 0 dIdo 1

0 0

a + (Yo + Ut = 1

-T ; sec °

t0 = e
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E(N) = iE(Nb) + COE(No) + W-Ci a o)E(Ns)

d= E(Nb) + (10 E(No) + (f' E(Nt)

= Z P(j)
j =0

E (N) =7' jPj

j=O

A PRELIMINARY RESULT

Given a sphere with infinite radius and of material with total cross section
It, given that isotropic scattering of a nonabsorbed neutron has just occurred at a
known impact point, and given that an arbitrarily directed W axis with origin at
that known impact point has been erected; then, both the scattering angles and the
distance to the next impact point are random variables. Also, the W coordinate
(perpendicular projection onto the W axis) of the next impact point is a random
variable over the range (-co < W < co). Let the units for reckoning distance be the
some in the W system as in the (X, Y, Z) system.

Assuming the foregoing, consider the following problem: Find the density
function, h(W), for the W coordinate of the next impact. For motivation, it is
mentioned now that in sections to follow the W axis will be oriented parallel to
the Z axis for the slab problem.

Because this whole report depends upon the validity of this function, h(W)
will be sought by two different methods: first, directly; and second, indirectly,
by computing first the distribution function H(W), and then differentiating it with
respect to W to obtain h(W).

Before starting either solution, some preliminary comments seem appropriate.
By a distribution function, H(W), is meant a function bounded below by zero and

* above by unity such that

W

H•(W) = h(J)dý

and dH(W)/dW = h(W), everywhere that H(W) is differentiable, where h(W) is the
density function of the random variable W.
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Because of symmetry about the point W = 0, H(0) = 1/2, and h(W) = h(-W).

Finally, the following general properties of all distribution functions are noted:

H(-4) = 0

H(co) = I

H(W) is monotonically nondecreasing with increasing W.

Direct Derivation of h(W)

Consider any ray from the origin W = 0, the immediately previous impact
point, into the right half infinite sphere W > 0, making an angle P < nr/2 with the
positive W axis. For a neutron traveling this ray, the W coordinate-f the next
impact is a random variable with density function g(W) = It sec P e"t Wsec 0
W > 0. Since this is true for all such rays in the right half sphere, their uniformly
(1/41) weighted "sum" is

21r iT2 ~Wsec~
h(W) = Y j sec P e sin Pd d77

0 0

where 77 represents angles in the plane perpendicular to the W axis through the
point W = 0. This recognizes the fact that scatters from this impact point into the
left half sphere or the right half sphere are equally likely.

Thence, by integrating over 77,

W 17/2 1 t Wseco
h (W) = 2 . tno dO

0

To facilitate this remaining integration, the following change of variable is made:

V = t Wseco

dV = t Wtan secPd#

dV
V -- = ton d5
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Substitution gives

It •0 e-V
h(W) =T Y" "--dr

;tw

I
h (W) T • Ei(- t W) W > 0

By symmetry,

F (W) 2 Ei(ltW) W < 0

Values for the exponential integral Ei(.) are tabulated. 1' 2

Indirect Derivation of h(W)

Noting that

H(0) =

and that for any neutron leaving the origin W = 0 and entering the right half sphere,
the probability of its impacting again, before its pro jction on the W axis becomes
"as large as any particular positive W value, is 1 - e0tWsec ,

*11 -I'tWseco)

H(W) 2 + 2 1 - e sin d#
0

tr/2e -it Wsec sin dO W > 0
0

S~e
1 2 V2 T dV

S~ztw v
-Z -w Itw

1  e 2 2Ei(-ItW) W > 0
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Because of symmetry, H(co) - H(W) = H(-W) - H(-ao), and thus,
ztw ztw

H(W) e ; - I Ei(ItW) W < 0

2 2

S (W) d dH ()
dW

It -It W It it -it W
h(W) = -- T - -'Ei(-tW) - -)-e W W>0

h(W) = T Ei(.W) W > 0

2It
h(W) = - -•-Ei(I'tW) W<O0

INTRODUCTION TO MARKOV CHAIN CONCEPTS

Consider some phenomenon in which a "particle" at any one instant may be in
any one of a known number (few, several, many, or a countably infinite number) of
different possible states (positions or conditions). Given that the particle can change
its state sequentially in a chain of steps, and that for each existing state, the proba-
bility of its being in any other state immediately after the next step is known for all
states; then the problem of computing for a particle in one known given state the
probab;lity of its being in some particular given state exactly n steps later is a Markov
chain problem.

The following example may clarify the foregoing abstraction. Bill has four
coins and Joe has three coins, and they agree to gamble these, one at a time (say by
matching or flipping) where for each person, the probability of winning or losing the
coin each time (each step) is one-half. From Joe's point of view there are eight
possible states: broke, has one coin, .... has six coins, has seven coins. The chain
of steps is the successive encounters or matchings with the attendant change in wealth.
It is mathematical/ convenient to indicate the different possible states as:

(1,0, 0, 0, 0, 0, 0, 0) means Joe is broke (Bill has seven coins)

(0, 1,0,0,0,0,0,0) means Joe has one coin

(0, 0,1,0, 0, 0, 0, 0) means Joe has two coins

(0,0,0,0,0,0,0, 1) means Joe has seven coins (Bill is broke)
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Here the "particle" is the 1 in the vector, and the state of Joe's wealth at the close
of any event is indicated by the position of the particle. The game starts with the
state vector being V = (0, 0, 0, 1,0, 0, 0, 0), i. e., with Joe having three coins, and
will continue througg a sequence of vectors indefinitely, until either Joe goes broke
(1,0,0,0,0,0,0,0) or Bill goes broke (0,0,0,0,0,0,0, 1).

If the game is just about to start, we cannot know now the state of Joe's wealth,
say, three encounters later. However, for each of the eight states, it is possible now
to compute the probability that he will be in that pa-ticular state at the close of the
third encounter. To make this and other computations, first a transition matrix M is
displayed.

,.•"10 1 0 0 0 0 O",, 10000000

S~ o oioooo

00040400* o oo½o ½o~o

j 00000300

To explain the construction of the matrix, it is noted that there are eight rows
and eight columns; and thus, there are 64 entries within the matrix. If i = 0, 1,
7, and j = 0, 1, ... , 7, and Pi j are the entries, then any P-i appearing in the ith
row and jth column is simply the answer to the following queslion: "given that the
particle is in ith state, what is the probability that at (immediately after) the next
encounter (step) the particle will be in state j?" For example, if at some instant
Joe has six coins, then as an immediate result of the next matching he will have
either five or seven coins, each with probability 1/2; and zero, one, two, three,
four, or six are impossible (probability is zero). These facts are indicated in the
next to last row of M by the ordered entries 0 0 0 0 0 4 0 4.

Now to show the use of M, we perform the multiplication Vo M to obtain V1 ,
the state vector, just after the first matching.

V1 : VoM

N=(0 041010 0 0)

This result merely shows that Jce is equally likely to have two or four coins after the
first step, and it is impossible to have at that time any other sum.
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Now, performing the multiplication V1 M,

V2  V 1 M

V2 = (0 1 0 ½ 0 1 0 0)

which simply means that at the end of the second step Joe's probabilities are as
follows:

P (broke) = 0

P (single coin) =

P (two coins) = 0

P (three coins) =

P (four coins) = 0

P (five coins) =

P (six coins) = 0

P (seven coins) = 0

Continuing,

V3 = V 2 M

V3 =( 0 0 0 0)

It is noted that at each step the sum of the entries in the state vector is unity,
as required by the fact that the "particle" must at all times be somewhere.

It is possible to continue indefinitely and observe that as the number of steps
increases the state vector will approach the inevitable result:

VD= ( 1 oo00 o0o0 )

This simply means that if Joe and Bill agree to play until on,- is broke the probability
that Joe goes broke eventually is 4..
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A MARKOVIAN APPROXIMATION TO THIN-SLAB ALBEDO

Returning now to the problem of this report, it is noted first that the distance
from the slab face to a neutron impact point for some future impact of interest is not
exactly amenable to the Markov approach described above, because this distance is
a continuous variable in contradistinction to a discrete variable. Thus, the number
of possible states is uncountably infinite. Nevertheless, it is proposed to obtain
approximate results by dividing (conceptually) the slab thickness into an integer

r number (T) of equally thin sub-slabs (cells), each of thickness h. This gives rise
to + 2 arkov states numbered i or j = 0, 1, ... T, T

At any step (serially numbered neutron impact), the existence of the neutron
in state (or cell) zero means by convention that it has already returned to region
Z < 0 and, thus, will never actually experience that numbered impact. At any
numbered impact (step), state five means that the neutron has experienced that
impact at some point such that 4h < Z < 5h i T. At any step the neutron in state
( + 1) means by convention that it has already passed through the slab of thickness
T and will never experience that or later impacts.

The reason this approach will not be exact is that when computing a typical
element min; of the ( T + 2) by ( + 2) transition matrix M, the assumption is made
that if the last impact occurred in the ith cell, it occurred at a midpoint of this
cell. This tends to err on the side of stability, causing the diagonal elements mii
to be slightly too large. It is expected, however, that as h - 0, i. e., as the number
of cells is increased, the computed albedo, as well as other desired results, will
converge rapidly so as to produce results with sufficient accuracy for practical
purposes.

If by convention the (T + 2) elements of state vector V1 are the probabilities
that the first impact will occur in the corresponding cell, then it will be possible to
compute V1 exactly (within round-off error).

The next section of this report consists of a specific numerical example. There
are two reasons for presenting such a section. First, the authors find that it is easier
to explain the concepts by an example than by an abstraction. Second, it is believed
thnt it will be easier to follow.

A NUMERICAL EXAMPLE

In order to achieve a better understanding of the physical problem, let us
consider a neutron normally incident on a slab whose thickness is one half of a mean
free path. Let us subdivide the slab conceptually into five layers each of thickness
h. Assume the absorption cross section is one fourth as large as the scattering cross

,a section. Then we have
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1
T
T =It

I
Tt

o = 0

h=_.
10it

i = 0, 1, ... , 51 6

The "cells" are the various slab regions. For example, the zeroth cell, or
region, is the void which the incident neutron traverses before it reaches the slob.
The first cell is the first layer of the slab which the neutron encounters as it enters
the slab. The various cells, then, are defined as follows:

i=0 Z<0

"=1 0<Z<0.1

=2 0.1 < Z < 0.2

i= 3 0.2 < Z < 0.3

i = 4 0.3 < Z < 0.4

= 5 5) 0.4 < Z < 0.5

i=6 0.5<Z

One unit of distance (for example along
the Z axis) is equal to 1/1t.

It will be noted that a point on a cell boundary is left ambiguous, and the
authors without apology take the dodge that an impact will occur there with proba-
bility zero. It is desired to approximate the fifteen items listed in this report under
the heading "Statement of the Problem."

The V1 state vector, showing the position by cell number for the first impact,
will now be computed. The probability that this will occur in cell zero is zero,
because by assumption the space Z < 0 is vacuum except for the neutron moving
along the negative Z axis.

11
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,- -seco t ZP (Ost impact in cell 1) = Y sec. 0t t dZ

0

= 0.0951626

5
10;t

(i~t io;-sec8 00~ Zt
P1st impact in cell 5) = seceo e e dZ

4

= 0.0637894

OD -sec6o zZ
P (cell 6 entered with no impact) = sec8 0 It e dZ

5

10t

= 0.6065307

Thus, the transpose of state vector V1 is

"0
0.0951626
0.0861067

= 0.0779125
1 =0.0704982

0.0637894
0.6065307

This simply means that, a priori, the position of the first impact of a neutronwith a nucleus of the slab material is unknown, but nonetheless the probability thatthis will occur, for example in the fourth cell, is 0.0704982 or, equivalently, about7.05% of a large number of neutrons will experience their first impact somewhere
within cell number four.

12



As a prelude to the construction of the transition matrix M, it will be recalled
that for on arbitrary directional one-dimensional W coordinate system with origin at
a last point of impact from which an unabsorbed neutron in leaving isotropically (in
three space), the distribution function of the W coordinate of the next impact point
is

It W tW

e - Ei(ItW) W < 0
2 2 t

H(W) =W = 0
2

"It W I W
1 2 -2- E i ( - -l W) W > 02 2 I t

Let us now measure W coordinates, h, and T in distance units equal to (1/It) and use
the above expression, a table of the exponential function, and a table of the Ei(.)
function to compute Table 1 for H(W) versus W.

Table 1. Tabulation of Values of Distribution Function H(W) Versus W

W H(W) W H(W) W H(W) W H(W)

-0.51 0.1605531 -0.37 0.2056105 -0.23 0.2696302 -0.09 0.3706221
-0.50 0.1633219 -0.36 0.2094350 -0.22 0.2752676 -0.08 0.3804805
-0.49 0.1661514 -0.35 0.2133564 -0.21 0.2810874 -0.07 0.3909176
-0.48 0.1690435 -0.34 0.2173784 -0.20 0.2871003 -0.06 0.4020231
-0.47 0.1719999 -0.33 0.2215052 -0.19 0.2933180 -0.05 0.4139172
-0.46 0.1750229 -0.32 0.2257046 -0.18 0.2997535 -0.04 0.4267694
-0.45 0.1781145 -0.31 0.2300901 -0.17 0.3064211 -0.03 0.4408360
-0.44 0.1812770 -0.30 0.2345576 -0.16 0.3133370 -0.02 0.4565523
-0.43 0.1845127 -0.29 0.2391486 -0.15 0.3205194 -0.01 0.4748353
-0.42 0.1878240 -0.28 0.2438687 -0.14 0.3279889 0.00 0.5000000
-0.41 0.1912135 -0.27 0.2487238 -0.13 0.3357693 +0.01 0.5251647
-0.40 0.1946840 -0.26 0.2537203 -0.12 0.3438877 +0.02 0.5434477
-0.39 0.1982383 -0.25 0.2588651 -0.11 0.3523762 40.03 0.5591640
-0.38 0.2018794 -0.24 0.2641657 -0.10 0.3612725 +0.04 0.5732306

13



At each impact the neutron is either absorbed permanently then and there
(with probability 1/I = 0.2), or it moves isotropically in three-space from there
(with probability l/lt = 0.8). To assist in computing the mij elements of M, it is
convenient to orient a W axis parallel to the Z axis with W increasing with increasing
Z and with the origin of the W axis at the center* of the ith cell. Then, Table 1 is
used to compute

iT
.• mij 't TH T-+- i-e.

I S T

J =1, ""

M. H i h T

i 10  ( 2-)h h

= T I I-T I=1 Ti, + 1 
h

h

0 j -1 j, T.. ,

of, I j =0m h
-T j 1 T +

h h

The foregoing seemingly confusing formulae may be clarified by referring to
Figure 1, which is a geometric display of the cells for this numerical example. The
orientation of the illustration is across the slab perpendicular to the faces and shows
the cell locations (Z coordinates of the edges and center of the five interior cells).
The thickness of the slab is 0.5/It.

A * All the inaccuracy of this method stems from this approximation; i.e., the mean
S•.effective center of impact for the cell is not necessarily at the center.

14



Cell number 0 1 : 2 11 3 1 4 4 5 6
I 'l I ' I ' I I I

Z coordinate 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

IlidT

Figure 1. Cell number.

Now, for example, to compute N4 1 , referring to Figure 1, it is noted that for
the neutron to move from cell 4 with center at Z = 0.35 to cell 1, it is necessary to
move to the left (decreasing Z) a distance someplace •etween 0.25 and 0.35 units
before the next impact. Now, referring to Table 1, ý(-0.25) - H(-0.35) = 0.2588651 -

0.2133564 = 0.0455087. But for any impact in cell 4; the probability of immediate
neutron absorption there is 0.2. Thus,

m 4 1 = 0.8(0.0455087) = 0.0364070

The complete transition matrix M is displayed in Table 2.

Table 2. Transition Matrix M (I% = 0.8)

1.0 0.0 0.0 0.0 0.0 0,0 0.0
0.3311338 0.1377324 0.0747183 0.0493234 0.0364070 0.0281935 0.1424916
0.2564155 0.0747183 0.1377324 0.0747183 0.0493234 0.0364070 0.1706851

0.2070921 0.0493234 0.0747183 0.1377324 0.0747183 0.0493234 0.2070921
0.1706851 0.0364070 0.0493234 0.0747183 0.1377324 0 0747183 0.2564155
0.1424916 0.0281935 0.0364070 0.0493234 0.0717183 0.1377324 0.3311338
0.0 0.0 0.0 0.0 0.0 0.0 1.0

Using V1 and M the following sequential computations are performed:

V2 =V1IM

V 3 = V2 M

v4 = V3 M

15
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1
This process should converge reasonably rapidly to VoI a limiting vector in which
the zeroth component represents total albedo, the sixth component represents proba-
bility of transmission through the slab, and the other components are zero. For any
state vector Vk, one minus the sum of the components is the probability of neutron
absorption before the kth impact. Table 3 displays the results of the first few
Vk + 1 = Vk M computations.

Table 3. Successive State Vectors ' = 0.8)

V1  0.0 0.0951626 0.0861067 0.0779125 0.0704982 0.0637894 0.6065307
V2  0.0908481 0.0277487 0.0305911 0.0302724 0.0280093 0.0237141 0.6901224
V3  0.1223097 0.0092891 0.0107940 0.0110863 0.0104107 0.0087482 0.7206015
V4 0.1334728 0.0032584 0.0038411 0.0040010 0.0037865 0.0031845 0.7316297
V5 0.1374653 0.0011608 0.0013742 0.0014388 0.0013665 0.0011506 0.7356036

V6  0.1388972 0.7370328

v (*St.) 0.13979 0.0 0.0 0.0 0.0 0.0 0.73792

Estimated probability of absorption = 1 - 0.13979 - 0.73792 = 0.12229.

In the process of computing the zeroth component of any Vk + 1 vector, using

the row by column rule, it is possible to note in detail from which cells the increase

in total albedo springing from the kth impact came. This detail is recorded in
Table 4. For example, the probability that the neutron will enter the zeroth cell
immediately after a final fourth impact in cell number 2 is simply

0.0038411 x 0.2564155 = 0.00098492

where 0.0038411 is the number 2 cell component of V4 (Table 3), and 0.2564155 is
m2o read from Table 2. The result, 0.0009849, is recorded in Table 4. The last
line of Table 4 contains Q values, which are the analysis of total albedo into the
cell of final impact.

In a similar manner, Table 5 is a record of entrances into cell number 6,
maintained by impact number and cell source.

Total albedo (probability of entering cell zero), or proportion of a very large
number of incident neutrons which backscatter, consists of those which have exper-
ienced exactly one impact, exactly two impacts, exactly three impacts, etc. From
the left column of Table 3, by taking differences, it is possible to construct Table 6,
which is a breakdown of neutrons entering cell zero into the number of impacts
before returning to the region Z < 0. Of course, it is computationally expedient
during the matrix multiplication leading to Table 3 to record entries in Table 6.
(This avoids the need for actual subtraction.)
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Table 6. Number of Impacts Analysis of
Albedo (Zeroth Cell Entrants)

Is 0.8)

Number of Impacts Probability

1 0.0908481
2 0.0314616
3 0.0111631
4 0.0039925
5 0.0014319

Total of 5 0.1388972
6 and more (est.) 0.00089

Estimated total albedo 0.13979

In a similar manner, the estimated number of historic impacts for neutrons
entering cell 6 (passing through the slab never to return) are listed in Table 7.

Table 7. Number of Impacts Analysis of
Neutrons Transmitted Through Slab

=0.8)

Number of Impacts Probability

0 0.6065307
1 0.0835917
2 0.0304791
3 0.0110282
4 0.0039739
5 0.0014293

Total 0 to 5 inclusive 0.7370328
6 and more (est.) 0.00089

Estimated total through slab 0.73792
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In order to break down the 0.12229 absorbed (beneath Table 3) into the impact
number (I. e., first, second, third, etc.) at which absorption takes place, Table 8 is
constructed by first summing the components of the successive state vectcrs (Table 3)
and then subtracting to find the amounts of absorption at successive impacts.

Table 8. Absorption of Neutrons by Cell and Impact Number

_ _ _ (%= ~0.8) _ _

Impact 6
Number I vij Absorbed Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 S(i) j=0

1 1.0000000 0.0786939 0.0190325 0.0172213 0.0155825 0 0140996 0.0127579 S2 0.9213061 0.0280666 0.0055497 0.0061182 0.0060545 0.0056018 0.0047428

3 0.8932395 0.0100657 0.0018578 0.0021588 0.0022173 1 0.0020821 0.0017496
4 0.8831739 0.0036143 0.0006517 0.0007682 0.0008002 0.0007573 0.0006369
5 0.8795596 0.0012981 0.0002322 0.0002748 0.0002878 0.0002733 0.0002301

Est 6,7,8,... 0.00055 0.00011 0.00011 0.00011 0.00011 0.00011
Est co 0.87771

Total 0.12229 0.02743 0.02665 0.02505 0.02292 0.02023

The foregoing computations have been concerned in the main with proportion
absorbed, proportion passing through, and total albedo. It is now time to come to
grips with the problem of analyzing the total albedo with reference to the directional
(6) density, g(e), of backscatter and, of even more interest to the physicist, the
differential albedo a(@, 0) for 0 < 9 I'/2. It is essential to note that these differ
from each other.

First, define (f, the total albedo, to be the probability that eventually the
neutron backscatters to Z < 0. This is, of course, a function of Ta' 1s, T, and e0 .
Then a, the differential albedo per steradian is defined so that

.ýad n = d
BHS

where BHS is the back hemisphere in the region Z < 0, with base in the plane Z = 0,
6nd d Q is the differential solid angle so that

d 0 = sin 9 dO do
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The defining relation can be rewritten as

2ff 7r/2

S S asined8dO =d

0 0

In general, ot is a function of both 8 and 0. For the isotropic case of this
report, a is independent of 0; nevertheless, it is well to remember that a/(d is a
two-dimensional directional density of the backscattered neutron. After the first
integration is performed,

17/2

21Y Y sin e d8 =

0

or
i7/2

YS g(e) d8 = (U
0

where

2
g(e) 7 2 r asin e

a density which displays the relative frequency of return at all the values of 6,
0 <e < 17/2.

For a neutron that is backscattered, having had its lost impact at a known
depth Z, the angles (8, 0) of return are, of course, random variables with some joint
density, say f(O, 8), where

5 f(0,e)d(I = 1

BHS

If an impact is at a depth Z and the direction of a nonabsorbed neutron is
0 e 8 < 1r/2, 0 < 0 < 21y, then the robability that it will leave the slab (via Z = 0)
with no more impacts is e-It Zsec and therefore, because of isotopy, f(O, 8) must
be proportional to this. Restated with proportionality constant K,
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-It Zsec 8
.- (•,e)dn = Ke" dO

To evaluate K,
,22• -TtZ sec e

1 = eK S Ze sin 8 dode

0 0

2 K f/2 e-_t Zsecs

0

21 = 2 [et + ItZEi(-ItZ)]

K = I
4I H(-It Z)

where H is defined as

H(-1tZ) = 1[ + ItZEi(-Itz

The density function then becomes

- Z sec e

f(0, e) = e
41r H(-I" Z)

This is the directional density of return for a neutron returning with its final
impact having been at depth Z. The bottom of Table 4 estimates the breakdown of
total albedo into the cell of final impact and thus gives depths Z roughly (within a
half cell width). If it is now assumed that a neutron leaving a cell had its impact
at the middle of the cell, then a rough estimate of a may be had by summing over
all cells. Ideally, if O(Z) dZ is the a priori probability that an incident neutron
will eventually backscatter from a last impact at depth Z, then

O((, f() = d Z
0
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This will now be approximated roughly. The approximation may be improved
ultimately by dividing the slab into more cells. The approximation will be made in
Table 9 for various angles 6. To do this, f(@, 9) is computed and entered into the
third column for various values of S. The Q values of the fourth column have been
taken from the lost line of Table 4. The sum of the products, Q0 f(0, 8), then is an
estimate of differential olbedo. The results in Table 9 are plotted in Figure 2.

Using the results of Table 9, the density g(O) is computed in Table 10 and
plotted in Figure 3 as 13 g(8). The area under this curve is 0.1398, the estimated
total albedo. It is noted that this function has a mode at about 9 = 58 degrees.
This simply means that a greater percentage of the total albedo scatters back into
a neighborhood de about an angle 9 of approximately 58 degrees than into other
neighborhoods of the some size. This does not say that differential albedo is
maximum near 58 degrees; differential albedo has its maximum at 9 = 0 (Figure 2).

Computations for the scatter through angular distribution similar to those
for albedo (Tables 9 and 10 and Figures 2 and 3) could be made using the some
technique - a novel feature being that here ir/2 < 19 - ir. These computations were
not actually performed for this example. The density function for total neutrons
going through would contain the additional novel feature that there is a spike of
mass (in this case 0.60653/0.73792) in the direction --8o=vf, corresponding to the
probability of passing directly through the slab with zero impacts.

There remains the task of estimating the expected number of neutron impacts
and to analyze this into various classifications. There are two methods (say, A and
B) available for estimating the expected number of impacts.

To explain method A, consider Table 3. For V1 the sum of the components
1 through 5 (0.3934693) is the probability of experiencing a first impact. The
probability of experiencing a second impact is the sum of the components 1 through 5
of V2. Thus, if these component sums are summed over all Vi, i = 1, 2, 3, ... , this
double summation will be an estimate of the expected number of total impacts.

Method B is a direct application of the definition of expected value, namely

7Z hP (exactly h impacts) = E (number of impacts)h = EIo
h=l

To use this formula it will be necessary to estimate P 'exactly h impacts) as the sum
of the following three quantities: (1) probability of entering cell 0, having had
exactly h impacts; (2) probability of entering cell 6, having had exactly h impacts;
and (3) probability of being absorbed at the hth impact.

By the nature of the convergences, method A should, in practice, be the more
accurate, and method B will constitute an approximate check.
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"Table 9 . Computation of Differential Albedo Is 0.8

i t z f 0 ) 0 0 fe' )

0 0.05 0.1828782 0.04544 0.0083100
0.15 0.2136937 0.03421 0.0073105
0.25 0.2394104 0.02598 0.0062199
0.35 0.2628340 0.01976 0.0051936
0.45 0.2848776 0.01442 0.0041079

,) = 0.0311419

ir/9 0.05 0.1822923 0.04544 0.0082834
0.15 0.2116464 0.03421 0.0072404
0.25 0.2355999 0.02598 0.0061209
0.35 0.2569960 0.01976 0.0050782
0.45 0.2767680 0.01442 0.0039910

(0d, 71/9) = 0.0307139

2fr/9 0.05 0.1801068 0.04544 0.0081841
0.15 0.2041250 0.03421 0.0069831
0.25 0.2218114 0.02598 0.0057627
0.35 0.2361884 0.01976 0.0046671
0.45 0.2482972 0.01442 0.0035804

0k(¢, ?T/9) 0.0291774

51T/18 0.05 0.1778666 0.04544 0.0080823
0.15 0.1966027 0.03421 0.0067258
"0.25 0.2083561 0.02598 0.0054131
0.35 0.2163763 0.01976 0.0042756
0.A5 0.2218461 0.01442 0.0031990

cx(0, 5i/18) = 0.0276958

Continued
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Table 9. Continued.

St z f(,) Q Q f(,8)

r/3 0.05 0.1739591 0.04544 0.0079047
0.15 0.1839279 0.03421 0.0062922
0.25 0.1864530 0.02598 0.0048440
0.35 0.1852160 0.01976 0.0036599
0.45 0.1816460 0.01442 0.0026193

( tI/3) = 0.0253201

7Ii/18 0.05 0.1661066 0.04544 0.0075479
0.15 0.1601279 0.03421 0.0054780
0.25 0.1480024 0.02598 0.0038451
0.35 0.1340471 0.019/6 0.0026488
0.45 0.1198628 0.01442 0.0017284

cx(0, 71T/18) 0.0212482

4n/9 0.05 0.1441539 0.04544 0.0065504
0.15 0.1046612 0.03421 0.0035805
0.25 0.0728561 0.02598 0.0018928
0.35 0.0496974 0.01976 0.0009820
0.45 0.0334688 0.01442 0.0004826

(, 47r/9) = 0.0134883

171rt/36 0.05 0.1083248 0.04544 0.0049223
0.15 0.0444110 0.03421 0.0015193
0.25 0.0174572 0.02598 0.0004535
0.35 0.0067243 0.01976 0.0001329
0.45 0.0025571 0.01442 0.000369

(c, 17ff/36) 0.0070649
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"Table 10. The Density g(O), = 0.8)

e 2W sin e C? g (8) g (e)

0.0 0.0 0.0311419 0.0 0.0
ff/9 2.148976 0.0307139 0.06600 0.47214

21r/9 4.038754 0.0291774 0.11784 0.84298
577/18 4.813199 0.0276958 0.13331 0.95364

7r/3 5.441398 0.0253201 0.13778 0.98562
7ff/18 5.904263 0.0212482 0.12545 0.89742
4ff/9 6.187730 0.0134883 0.08346 0.59704

1777/36 6.259276 0.0070649 0.04422 0.31633
wr/2 6.283185 0.0 0.0 0.0

Proceeding with method A, Table 11 is prepared from Table 3 by computing
the sums

5

zvij
j=1

and then finally estimating the sum of all these, i= 1, 2, ... , obtaining the result
0.612 for the expected total number of impacts in the offing for a neutron directed
at the slab.

Proceeding with method B, Table 12 is constructed by transcribing Tables 6,
7, and 8 to columns 2, 3 and 4 of Table 12, summing these to form the column
"Probability of exactly h impacts," and then forming the last column by the indicated
multiplication.

The reason the result of Table 12 is intrinsicly less accurate than that of
Table 11 is that the figure 0.0150 in the lower right corner of Table 12 is a rough
infinite-sum estimate, made rough becaus, the ratios of successive entries in the
last column stabilize much less rapidly thin those of Table 11.

A breakdown of the expected 0.61233 impacts can be approximated as shown
in Table 13. The expected number of absorbing impacts is computed simply as
0.2 x 0.61233 - 0.12247. To compute the expected number of impacts invested in
absorbed neutrons, the cross-products of the first and third column of Table 8 are
summed. Here again the slow convergence introduces inaccuracy in the estimate
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for i=6, 7, .... Similarly, Tables 6 and 7 are used to estimate the expected
number of impacts of the incident neutron to be invested, respectively, in albedo
and scatter-through. The Table 13 round-off error, 0.61310 versus 0.61233, could
be reduced by extending Table 3 with some more matrix multiplications, computing,
say, V6, V'7, and V8.

If a neutron is Eackscattered, the expected number of impacts it has is
E(Nb) = 0.216i2 = 1.546

0.13979

If a neutron has been absorbed, the expected number of impacts it has had is

= 0.19057 = 1.558
E(N) 0.12229

If a neutron is scattered through, the expected number of impacts it has had is

E(N ) - 0.20641 1.571
s 0.13139

Table 11. Expected Number of Impacts - 0.8

i P(ith impact)

1 0.3934693
2 0.1403356
3 0.0503283
4 0.0180714
5 0.0064908
6 0.002331 (est.)
7 0.000837 (est.)

8, 9, ... 0.00047 (est.)
CO

5- 0.61233 (est.)i=j

5

Probability of experiencing the ith impact is computed as 2 Vij (from Table 3).
1=1

Estimated expected number of impacts is 0.61233.
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Table 12. Check Estimate of Expected Number of Impacts/- = 0.8)

(1) (2)

h With Exactly h Impacts Probability (1).(2)
P(Backscatter) P(Scatter- f Exactly

Through) P(A' orbed) h Impacts

1 0.0908481 0.0C,15917 0.0786939 0.2531337 0.2531337
2 0.0314616 0.0304791 0.0280666 0.0900073 0.1800146
3 0.0111631 0.0110282 0.0100657 0.0322569 0.0967707
4 0.0039925 0.0039739 0.0036143 0.0115807 0.0463227
5 0.0014319 0.0014293 0.0012981 0.0041593 0.0207965

6, 7, ... Est 0.00089 0.00089 0.00055 0.00233 0.0150

Expected total number of impacts 0.6120 Est

Table 13. Analysis of Expected Total Number of Impacts t 0.8)

Expected number of absorbing impacts 0.12247
Expected number of impacts of neutron before absorbing impact 0.06810

Expected number of impacts invested in absorption 0.19057
Expected number of impacts invested in albedo 0.21612
Expected number of impacts invested in scatter-through 0.20641

Total expected impacts 0.61310

THE PERFECT SCATTERING MEDIUM

For the numerical example solved in the preceding section, it will be recalled
that Is/It = 0.8; i.e., the slab material could absorb neutrons, as well as scatter
thenm. The next case to be considered is the case of the perfect scatterer. Thut is,

Is i

Z =0a
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As before, we choose I
T =

2 t

1
h = 1

o=O

j = 0, 1,2,3,4,5,6

Since the computations are similar, only results will be presented. Tables 2A
through 7A, corresponding to Tables 2 through 7, give results for the perfect scattering
case. Figure 2A displays differential albedo for the perfect scattering case.

The expected number of collisions of a neutron before it leaves the slab is
found to be

E(N) = 0.711

The expected number of collisions of a neutron which has backscattered from
the slab is

E(Nb) = 1.792

The expected number of collisions of a neutron which is scattered through the
slab, i. e., has suffered at least one impact while penetrating, is

E(Ns) = 1.824

The expected number of collisions of a neutron whidh penetrates the slab, with
or without collisions, is

E(N) = 0.437

Table 2A. Transition Matrix (IS = It)

0 0 0 0 0 0
0.4139172 0.1721655 0.0933979 0.0616543 0.0455087 0.0352418 0.1781145
0.3205194 0.0933979 0.1721655 0.0933979 0.0616543 0.0455087 0.2133564
0.2588651 0.0616543 0.0933979 0.1721655 0.0933979 0.0616543 0.2588651
0.2133564 0.0455087 0.0616543 0.0933979 0.1721655 0.0933979 0.32C5194
0.1781145 0.0352418 0.0455087 0.0616543 0.0933979 0.1721655 0.4139172
0 0 0 0 0 0 1
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Table 3A. Successive State Vectors (I t)

Vl 0 0.0951626 0.0861066 0.0779125 0.0704982 0.0637894 0.6065307
V2  0.1135602 0.0346859 0.0382389 0.0378405 0.0350116 0.0296427 0.7110203
V3  0.1627189 0.0145142 0.0168657 0.0173224 0,0162667 0.0136691 0.7586440
V4  0.1845217 0.0063641 0.0075021 0.0078144 0.0073955 0.0062196 0.7801833
V5  0.1942691 0.0028339 0.0033548 0.0035126 0.0033362 0.0028090 0.7898852
V6  0.1986388 0.7942470

Vm (Cst.) 0.2021809 0 0 0 0 0 0.7978191

Table 4A. Probability of Neutron's Entering Zeroth Cell Having Had
i Impacts With ith Impact Occurring in Cell j (0s = It)

j JTotal

1 2 3 4 5

1 0.0393894 0.0275988 0.0201688 0.0150412 0.0113618
2 0.0143571 0.0122563 0.0097956 0.0074699 0.0052798
3 0.0060077 0.0054058 0.0044842 0.0034706 0.0024347
4 0.0026342 0.0024044 0.0020229 0.0015779 0.0011078
5 0.0011730 0.0010753 0.0009093 0.0007118 0.0005003

5
SPij
j=1

0.0635614 0.0487408 0.0373808 0.0282714 0.0206844 0.1986388

Est ' Pij Qj
i=1

0.0645274 0.0496263 0.0381053 10.0288349 0.0210869 0.2021809

3
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Table 5A. Probability of Neutron's Entering Sixth Cell, Having Had
i Impacts With ith Impact Occurring in Cell j (Is I t )

i 
Total

0 1 2 3 4 5

0 0.6065307 0.0 0.0 0.0 0.0 0.0
1 0.0 0.0169498 0.0183714 0.0201688 0.0225960 0.0264035
2 0.0 0.0061780 0.0081585 0.0097956 0.0112219 0.0122696
3 0.0 0.0025852 0.0035984 0.0044842 0.0052138 0.0056579
4 0.0 0.0011335 0.0016006 0.0020229 0.0023704 0.0025744
5 0.0 0.0005048 0.0007159 0.0009093 0.0010693 0.0011627

5
" pij

0.6065307 0.0273514 0.0324447 0.0373808 0.0424714 0.0480681 0.7942470

Est ,. Pij
i--6

0.0005205 0.0006174 0.0007113 0.0008082 0.0009147 0.0035721

Est : Pij

i=1

0.6065307 0.0278719 0.0330621 0.0380921 0.0432796 0.0489828 0.7978191

Table 6A. Number of Impacts Table 7A. Number of Impacts
Analysis of Albedo Analysis of Neutrons
(Zeroth Cell Entrants) Transmitted Through
(Is I Zt) Slab (I= It

Number of Impacts Probability Number of Impacts Probability

1 0.1135602 0 0.6065307
2 0.0491587 1 0.1044896
3 0.0218029 2 0.0476236
4 0.0097473 3 0.0215394
5 0.0043697 4 0.0097019

Total of 5 0.1986388 5 0 0043618
6 and more (est.) 0.003542 Total of 5 G.7942470

6 and more (est.) 0.003572
Estimated total a lbedo 0,202181

Estimated total transmission 0.797819
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SUMMARY

The two cases that have been considered have both involved a neutron normally
incident on a plane slab with a thickness of one-half mean free path. Using a discrete-
ordinate approximation, the neutron-diffusion problem has been solved by employing
a Markov chain process to represent the random walk phenomenon of isotropic scatter-
ing, with or without absorption.

The 15 questions posed in the section Statement of the Problem have been
solved, as reviewed below:

1. For Is/I = 0.8, the total albedo (T was estimated to be 0.13979. For
Is' =I = 0.1021 8 .

2. The estimated differential albedo a for the two cases is shown in Figures 2
and 2A.

3. The analyses of total albedo into number of impacts are presented in
Tables 6 and 6A.

4. The analyses of total albedo into depth probability density of last impact
before backscatter from the slab are given in Tables 4 and 4A.

5. The probability of absorption for the case ;I/-t = 0.8 was estimated to be
Lio= 0.12229. For the perfect scattering case, clearly the probability of absorption

is zero.
6. The analysis of (it into number of impacts for the case where •/It = 0.8

is shown in Table 8.
7. The analysis of (to into depth density of absorption point for the case where

s/I~t = 0.8 is also shown in Table 8.
8. The probabilities of transmission, with or without collision, were estimated

to be 0.7392 for I /It = 0.8 and 0.79782 for 1s = I-
9. The anatyses of transmitted neutrons into number of collisions are given in

Tables 7 and 7A.
10. The analyses of neutrons scattered through into depth density of last

impact before penetration are given in Tables 5 and 5A.
11 - 15. The expected numbers of impacts were estimated to be

/ = 0.8 s =t

E(N) 0.612 0.711
E(Nb) 1.546 1.792
E(Ns) 1.571 1.824
E(Nt) 0.280 0.437
E(NO) 1.558

where the subscripts b, s, t, and o refer to backscatter, scatter through, transmission,
and absorption, respectively.
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All of the numerical values obtained are certain to be somewhat in error
because of the approximation of assuming that all collisions occur at midpoints of
the slab layers. The approximation can be improved by increasing the number of
subdivisions or layers. A consequence will be that the transition matrix will need
to become larger.

PLANS FOR THE FUTURE

It is planned to devise and employ a computer program to perform calculations
with increasingly fine slab layers. Results will be examined for convergence. If
results for infinitely thin layers can be approximated by extrapolation, the problem
will be sulved to a high order of approximation.

The computer program will also be used to generate albedo data for slabs of
various thicknesses, for different values of Is/;t, and for various polar angles of
neutron incidence.

Finally, attempts will be made to treat more difficult problems, such as the
case where neutron scattering is not isotropic, and, if possible, the case where IS
and It are functions of the neutron energy, which changes with each scattering
event.

Albedo values calculated by the Markov matrix method will be compared with
available experimental values. If agreement is satisfactory fo, known cases, albedo
values can be generated for use in shielding problems where backscatter is important.
Also, the method can readily be generalized to treat cases of penetration through
thin slabs of scattering and absorbing shields.
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GLOSSARY OF SYMBOLS

Total albedo; i.e., probability that eventually the No If the neutron is absorbed, this represents the number
neutron backscatters out of the slab. This is, of of impacts it has experienced. Thus, N >1•
course, a function of Is, s., T, and 90 .

Ns If ev-ntually the neutron scatters through the slob,
Total absorption; i.e., probability that eventually this represents the number of impacts it has exper-
the neutron is absorbed. This is, of course, a lenced. Thus, NS I> I .
function of fa, Is, T, and 90o.

Nt If eventually the neutron goes through the slab, this
Total transmission; i.e., probability that eventually represents the number of impacts it has expeionced.
the neutron is transmitted through the slab. This is, Thus, Nt > 0.
of course, a function of 2a, 2s, T, and o ,

Pij Probability of entering zeroth (sixth) cell, having had
Probabil.ity that the neutron posses through the slab i impacts with the ith impact occurring in cell j.
with no imnacts; i.e., uncollided transmission.
12t = 0"T2-t sec 60. P(.) Probability of (.). For example, P(j) denotes proba-

0 bility that the neutron will experience exactly j
Back hemisphere in region Z < 0, with base in impacts.
plane Z = 0.

QJ Probability of backscattering with the last impact
Differential solid angle. dn = sin 9 d~do. in the jth cell.

Expected value operator. Thus, E(N) simply denotes S Distance (scaler) measured in some units as the
the expected (or average) number of impacts to be Cartesian coordinates.
experienced by the neutron, where average is taken
over an infinite number of trials of the experiment: T Known slab thickness. Thus, space occupied by the
"shoot the neutron at the slab under the given slab is (-a* < X < co), (-a* < Y < o0), (0 < Z < T).
conditions."

Directional (<, 9), two-dimensional, density of the viJ jth cell entry of ith state vector.

backscatter from a fixed known depth, Z, where V It W sec8 /.

IBHS f(0', 0)dO = 1 . Vi ith state vector.

Directional (), one-dimensional, density of back- W An arbitrarily directed one.dimensional coordinate
scatter, where Jw/2 g(O)d9= 1. system in the same distance units as the Cartesian

0 system, and with origin at an impact point of the

Sub-slab thickness; so that T/h is a positive integer neutron.
number of sub-slabs, all of equal thickness; and the
number of Markov states is (2 + T/h). The symbol h X, Y, Z A fixed set of right-handed Cartesian axes with the
is also used as an index for counting impacts. initial slab face being the (X, Y) plane and the -Z

axis being totally outside the slab.
Probability density function of W projection of next
impact. a Differenial albedo per steradian; a function ofZ•, -i,, T, 9 0, and 9, where the integral over the
Probability distribution function, where dH(W)/dW b w (Z T 0) he re f al o

h(W). backward (Z < 0) hemisphere fBHS adil = d or,

Morkov state indices, where i,j = 0, 1, 2, T/h, equivalently, f02-r f 2 asin d~dg = d.

T/h + I . Also, i,j are used to count impacts. a' Differential scatter-through (collided transmission)
per storadian; a function of 2-V, Is, T, Oo, and 0,

A proportionality constant used to compute f(O, 8). where the integral over the forward (Z > T) hemi-
sphere J.FHS attdO = (it at or, equivalently,

Entry in Mat oth row and jth column. .217 .Tr sin0d~dc t .

Transition matrix. 
'0 hV2

Total number of neutron impacts. Thus, N > 0. Angle between a ray and the positive W axis.

"77 Angle between projection of ray onto a plane perpen-
If eventually the neutron backscatters to Z < 0, dicular to the W axis at w 0 and a fixed direction
this represents the number of impacts it has in this plane.
experienced. Thus, Nb > .

, 7 II I



GLOSSARY OF SYMBOLS

If the neutron is absorbed, this represents the number 9, 0 Polar and azimuthal angles of neutron return - if it
*f impacts it has experienced. Thus, NO > I does return. If X, Y', Z is a new set of axes (old

set translated but not rotated), having its origin at
If eventually the neutron scatters through the slab, the neutron return point, then 9 is the polar angle
this represents the number of impacts it has exper- that the returned neutron makes with -Z'axis, and
ienced. Thus, N. > 1 . 0 is the azimuthal angle that the returned neutron

makes with -Xe axis; where, respectively, the direc-
If eventually the neutron goes through the slab, this tions -X', Y', X', and -Y' have azimuths 0 equal to
,epresents the number of impacts it has experienced. 0, Tv/2, 77, and 37/2. When 0 = 0, . is undefined.
Thus, Nt > O.

60 Polar angle of neutron incidence. Neutron is directed

Probability of entering zeroth (sixth) cell, having had from outside the slab without interference toward the

impacts with the ith impact occurring in cell j. Cartesian origin (0, 0, 0). This direction of flight is
such that it makes angle 6o with -Z axis, angle

*robability of (.). For example, Pa) denotes probo- (17/2 - 90) with -X axis, and angle w/2 with Y axis;
Sility that the neutron will experience exactly j 0 <. 9O < 17/2.
mpacts. t, s,a Known constants; respectively, total, scattering,
2robability of backscattering with the last impact and absorption macroscopic cross sections of slab
n the jth cell. material. t = Y, + Z • Distance traveled by the

neutron within the slab between two successive
)istance (scaler) measured in same units as the impacts is a random variable with statistical density
:'artesian coordinates. function, f(S) = S e*'t s. A priori probability of

(nown slab thickness. Thus, space occupied by the being absorbed at the next impact is 2. /:Et . The
lab is (-oo < X < co), (-a* < Y < cc), (0 < Z < T). units for each I are the some as for 1/S.

th cell entry of ith state vector. q'o Azimuthal angle of neutron incidence; by definition,

always zero except when 00 = 0, and then 4 is
it W sec a . undefined.

th state vector. 2 Solid angle measured in steradians; where, e.g.,
S= 2w for a hemisphere.

in arbitrarily directed one-dimensional coordinate

ystem in the same distance units as the Cartesian
ystem, and with origin at an impact point of the
eutron.

fixed set of right-handed Cartesian axes with the
jitial slab face being the (X, Y) plane and the -Z
xis being totally outside the slab.

lifferential albedo per steradian; a function of
I, I•- T, 00, and 6, where the integral over the

ackward (Z < 0) hemisphere, fH5 adf = 6I or,
217 w2 BH

quivalently, f0 f0 asin , 8dOd d .
'ifferential scatter-through (collided transmission)

er steradian; a function of T-, 2,, T, Po, and 0,

-here the integral over the forward (Z > T) hemi-

phere fFHS at dfl = (It (?t or, equivalently,

27Y 17 at*in Bd9dq¶ OdO 0 I

ngle between a ray and the positive W axis.

ngle between projection of ray onto a plane perpen-
icular to the W axis at W 0 and a fixed direction
Sthis plane.
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